Figure 8.12 shows that two vortices, separated by distance b, and with equal but oppositely signed circulation Γ , induce respective winds V that result in a forward translation of the two-vortex system. This is given by

$$V = \Gamma/(2\pi b),\tag{1}$$

which also can be used to determine the vortex-induced winds at the rear-inflow center line. To do this, recall that circulation is equivalent to the mean vorticity $\overline{\zeta}$ over some area A. Assume that A is based on a circular vortex with a 7-km radius

(following Weisman 1993), and then use Eq. (1) to compute V given values of $\overline{\zeta} = 0.005 \, \mathrm{s}^{-1}$, $0.01 \, \mathrm{s}^{-1}$ and $0.015 \, \mathrm{s}^{-1}$, with $b = 10 \, \mathrm{km}$, 20 km, and 30 km (half the line-end vortex separation distance). Compare your results with those shown in Fig. 22 of Weisman (1993) (who used a more involved approach; see his Appendix). Discuss the implications both of larger and smaller line-end vortices on the vortex-induced rear-inflow winds, and speculate on the controls of the line-end vortex size.