Homework #1 – due 12:00 PM Friday, Feb. 8, 2018

- You are <u>encouraged</u> to work with others on this assignment, ... but *what you hand in <u>must</u> be your own work. No copying allowed!*
- Also: solutions <u>must</u> be handwritten; no typing! <u>no</u> late submissions accepted
- Provide your answers on separate sheets of paper not this one.
- 1. Consider this equation: $\frac{\partial^2 u}{\partial x^2} + xy \frac{\partial^2 u}{\partial x \partial y} 2x^2 u \frac{\partial^2 u}{\partial y^2} = 0$
 - a) Is this differential equation linear? Why or why not?
 - b) What is the order of this differential equation?
- 2. Regarding the Lotka-Volterra solutions we looked in class:
 - a) What kinds of errors were apparent? (brief description!)
 - b) Based on the plots that were shown in class, under what circumstances would the method we used converge to the correct solution?
- 3. Consider the 2-D staggered (Arakawa C) grid, with scalar variables at a grid box *center*. The velocity variables are located at **(choose one):**
 - a. same location as scalar (e.g. pressure, temperature) variables
 - b. parallel-flow sides of the grid box (U is staggered $\pm -\Delta y/2$)
 - c. normal-flow sides of the grid box (V is staggered +/- $\Delta y/2$)
- 4. Consider this FTCS numerical scheme: $\frac{\left(q_j^{n+1} q_j^n\right)}{\Delta t} + c \frac{\left(q_{j+1}^n q_{j-1}^n\right)}{2\Delta x} = 0$
 - a) Derive the truncation error.
 - b) State the order of accuracy i.e. order $\{(\Delta x)^m, (\Delta t)^n\}$: what are m, n?
 - c) Is it *consistent* with the PDE, $\frac{\partial q}{\partial t} + c \frac{\partial q}{\partial x} = 0$? How do you know?
 - d) Use von Neumann's method to show this is absolutely unstable (assume the Courant number *and* nondimensional wavenumber are nonzero)
 - e) Which computational molecule (a, b, or c) represents this method?

- 5. The answer to the question "how do wavenumber-dependent phase errors distort the solution?" requires two parts.
 - a. We first suppose that any solution can be represented as an infinite series of ... (finish this sentence)
 - b. We then say that, if individual wavenumber components traveled at different phase speeds, then ... (finish this sentence)
- 6. Study the following polar plots carefully. For v=0.75, estimate:
 - a. the *approximate* amplification factor for $2\Delta x$ and $4\Delta x$ waves.
 - b. the *approximate* phase error (ratio, $\frac{\phi}{\phi_e}$) for $2\Delta x$ and $4\Delta x$ waves.

